

Abstract— This article discusses the opportunities that are

offered by the paradigm shift form code-centric software

engineering to Model-Driven Engineering (MDE) and one of

the problems that hinder this shift. To enable MDE in practice

sophisticated software tools have to be developed and

employed. This paper presents and compares the available

ways for developing such software tools and argues that the

most reasonable of them is the development with metamodeling

tools. Based on this finding we identified a pretentious question

that is relevant to practitioners: “Which metamodeling tool

should be procured?” The main contribution of this paper is

the answer to this question that is given for a real-life project,

which dealt with the procurement of a metamodeling tool.

I. INTRODUCTION

OFTWARE systems have proven their usefulness and

efficiency across a myriad of application domains in

which they have been adopted. Based on the success of

software systems in these application domains, they are

applied and are going to be applied in more and more

additional application domains. Currently the markets

demand for new software is not fully addressed by the

software development industry. The main challenges that

the software engineering discipline has to face are [1, 2]:

How to sustainably increase the productivity and how to

shorten the time-to-market periods for new software?

Unfortunately the mainstream software development

methodologies used today do not stand up to these

challenges. Their common denominator is that they still

embody a code-centric paradigm i.e., they are largely

leveraged by third generation programming languages (e.g.,

Java, C# and C++). The constructs of these general-purpose

programming languages abstract the solution space - the

domain of computing technologies. The problem or task that

software has to solve is actually located in the problem space

– the application domain in which the software will operate

(e.g., healthcare, industrial process control, and insurance).

There is a big semantic gap between these two spaces, which

has to be bridged by a software system (the solution). Third

generation languages are designed for the implementation of

software systems that are dormant in a large set of various

application domains, therefore their constructs are very

general and full of implementation details, which are not

Tomaž Lukman is with the Department of systems and control at the

Jožef Stefan Institute, Ljubljana, Slovenia (tomaz.lukman@ijs.si).

Marjan Mernik is with the Faculty of Electrical Engineering and

Computer Science, University of Maribor, Maribor, Slovenia

(marjan.mernik@uni-mb.si).

relevant to the user but to the machine on which the software

is supposed to run. This bares two problems, which are the

reasons why mainstream software development cannot stand

up to the identified challenge:

1. In order to describe a concept of a specific application

domain with the general concepts of a third generation

programming language more space is needed, than to

do the same with concepts that are closer to that domain

(are more domain-specific). Consequently this demands

more effort form the developers and therefore causes a

lower productivity rate.

2. The solution is cluttered with implementation details, in

other words the solution is stated on a low level of

abstraction. Therefore the developer does not only have

to cope with the essential complexities (originating

form the problem/task itself) but also with accidental

complexities (originating from the implementation

technologies) of the software development activity.

The statement that the present mainstream development

methodologies are still code-centric often causes a lot

disagreement. The arguments that supports this disagreement

are: models have been used in software engineering for

many decades; today they are adopted into the software

lifecycle relatively often, due to the popularization of

modeling by the de facto standard modeling language

Unified Modeling Language (UML) [3]. Both of these

statements are true but they do not disproof our claim. In

these methodologies models are very often considered as

second class development assets in particular as “mere”

documentation [4], which is more like a necessary evil than

a valuable development asset. Although (UML) models are

constructed at the development of a software system they are

frequently abandoned after a certain time. As software has to

evolve, due to inevitable requirement changes, which happen

over time, developers commonly change the code instead of

the model. This way the model does not describe the actual

software system, which makes the model invalid and

consequently useless. In order to make the model valid

again, labor costly updates of models have to be carried out.

Although this synchronization issue is mitigated through the

usage of automatic code generation, reverse engineering or

even round-trip tools [5], they do not offer a solution for it.

The source of this issue is the fact that only a small part of

the code (e.g., class skeletons for UML models) can be

generated from the models, because they are constructed

with general-purpose modeling languages (e.g., UML). The

additional part of the implementation has to be added

Model-Driven Engineering and its introduction

with metamodeling tools

Tomaž Lukman, Marjan Mernik

S

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

manually in into the generated code. Thus the introduction

of models through UML and other general-purpose

modeling languages has not raised the productivity to a

sufficient level. The reason for this is that they do not

address the first reason (problem) of insufficient productivity

(i.e., they lack of domain-specific concepts).

II. MODEL-DRIVEN ENGINEERING

Model-driven engineering1 (MDE) is a software

development approach that has the potential to address the

identified challenges of software engineering. It offers an

environment that ensures the systematic and disciplined use

of models throughout the development process of software

systems. The essential idea of MDE is to shift the attention

form program code to models. This way models become the

primary development artifacts [4] that are used in a formal

and precise way. The two main components that enable

MDE are Domain Specific Modeling Languages (DSMLs)

and model transformations.

A. Domain-Specific Modeling Languages

One of the ways to increase productivity is through reuse.

Experiences [6, 7] have shown that closeness to the

application domain has been the most effective vehicle for

the reuse of knowledge and other software development

assets.

Usually an average software development organization is

specialized for the development of software within one or

only a few application domains, so it has valuable expert

knowledge about those domains. This domain-specific

knowledge is often the organization’s prime intellectually

property [1] and can also be the source of its competitive

advantage. In order to shield the organization against

personnel fluctuation this knowledge has to be made explicit

and one of the best ways to do so is to codify it into a

DSML. A DSML formalizes the application structure,

behavior, and requirements within a particular application

domain [8]. Because of that we actually reuse this

formalized knowledge every time we create a model with

that particular DSML. A properly designed DSML enables

only the modeling of meaningful (legal) applications within

the domain it abstracts. Formally a DSML is a 5-tuple of

concrete syntax (C), abstract syntax (A), semantic domain

(S), semantic mapping (MS), and syntactic mapping (MC):

� � ��, �, �,	
 , 	��.
The concrete syntax C defines the front end of the DSML

- the notation of the language with which the user will

model. This notation can be either textual or visual. We will

focus on visual notations, because they make the best use of

human visual perception [9]. Wisely chosen graphic symbols

are more expressive and intuitively related to the application

domain they abstract. Additionally such symbols help to

1 Also known as Model-driven development (MDD) or Model-driven

software development (MDSD)

flatten learning curves and also simplify the communication

with domain experts (users of the software system) [8].

The abstract syntax A defines the concepts, relationships,

and integrity constraints of the DSML [10]. The most

frequent way to define the abstract syntax is through a

metamodel (it can also be defined with graph grammars).

The semantic domain S is a domain, which is able to

define the meaning of the models (this is usually the domain

of computing or a formal/mathematical domain).

The semantic mapping MS defines the meaning for each

element of the abstract syntax with concepts from the

semantic domain. The most common way to do this is with a

model interpreter that interprets models and gives them

meaning with the help of the underlying programming

language in which the interpreter was written. Various types

of interpreters can be provided in order to support different

development tasks (e.g., code generators, model checkers).

The syntactic mapping MC binds each element of the

abstract syntax with a representation (elements from the

concrete syntax).

B. Model transformations

MDE ensures that models are formally defined and

precise, thus a partial automation of the software

development process can be achieved. It is commonly

accepted that automation is by far the most effective

technological means for boosting productivity and reliability

[1].

The automated parts of the development process are

achieved through model transformations. A model

transformation is the automatic generation of one or more

target models from one or more source models, according to

transformation definition(s). A transformation definition is a

set of transformation rules that together describe how a

model in the source language can be transformed into a

model in the target language [11]. A transformation rule is a

description of how one or more constructs in the source

language can be transformed into one or more constructs in

the target language [11]. MDE aims to automate many of the

complex but routine development tasks which still have to

be done manually today [9] with model transformations.

Some of the tasks that are automatable with them are [12]:

• Generating lower-level models, and eventually code,

from higher-level models.

• Mapping and synchronizing among models at the same

level or different levels of abstraction.

• Creating query-based views of a system.

• Model evolution tasks such as model refactoring.

• Reverse engineering of higher-level models from lower-

level models or code.

Czarnecki and Helsen [12] have proposed a separation

between model-to-model transformations and model-to-code

transformations, which are more often referred to as code

generation. This separation is particularly important for

practitioners, because most of them are first of all interested

into automatic code generation.

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

III. IMPORTANCE OF SOFTWARE TOOLS

Sophisticated software tools are needed to build up an

infrastructure that enables MDE and are therefore a vital

element for the achievement of the advantages that MDE

promises in practice. Stahl and Völter [13] go even a step

further and claim that MDE does not make sense without

tool support. The minimal features that software tools must

assure in order to enable MDE with a particular DSML are:

• Modeling environment for the chosen DSML, which

enables the creation and editing of visual models. This

environment must also include a way of defining and

enforcing constraints on the build models.

• Artifacts generator (model-to-code transformation

engine), which enables the generation of source code,

documentation and other development artifacts based on

the given models.

These two features are necessary, but not even close to

sufficient, for an efficient, effective and competitive

development with the selected DSML. Essential features that

developers have grown accustomed to are missing, therefore

it is very likely that developers will reject MDE and rather

stick to the development with third-generation programming

languages, which offer high quality Integrated Development

Environments (IDEs) that possess a variety of features for

the simplification and acceleration of software development

(e.g., Eclipse, Microsoft Visual Studio.NET).

Based on a literature survey and on our own experiences

some of the additional features that are useful are:

• Model debugger – the development of today’s complex

and extensive software is hardly imaginable without

debugging capabilities. Debugging capabilities should

also be available on the modeling level.

• Model validation – models are validated with the

constraints that are present in the domain they belong to.

• Model-to-model transformation engines – to enable

advanced development tasks on the available models a

mode-to-model transformation engine is needed.

Examples of such tasks are: model refactoring [14], and

exploration of design alternatives [15].

• Test suite – enables testing on the modeling level.

• Model analysis tools – enable analysis of the constructed

models in various ways e.g., assessing the quality of

models (this is done with model metrics).

• Model simulators – in some domains (e.g., embedded

software) the execution on the real platform is not

rational (e.g., the upload and execution of the program

take a long time) or not possible, therefore simulation

capabilities on the modeling level are much desired.

The more of these features are available the bigger are the

chances that developers will accept MDE.

IV. DEVELOPMENT OF SOFTWARE TOOLS

The task to develop a tool set that enables all the

presented features is very pretentious and even more so

when these features have to be implemented into one IDE,

which is preferred by most of the users. Due to the inevitable

evolution of the DSML or the domain it abstracts [16], the

implementations of all of features have to be modified in a

consistent way, which is another major challenge for the

developers. As if this was not enough a software

development organization can have a set of DSMLs,

therefore this development task has to be carried out several

times – for each of them.

It is necessary to emphasize that there are different paths

(approaches) to reach the goal of developing an IDE for a

particular DSML. We will classify these paths into three

categories, which are depicted in Figure 1.

The development from scratch (X on Figure 1) is the

development path without any reuse. More precisely: no

assets (libraries or frameworks) that are external to the

implementation language are reused. Because of that this

kind of development demands the advanced skills of

building interpreters/parsers, diagramming user interfaces

and other nontrivial components. On the other hand the

developers are not constrained by the capabilities of the

assets they reuse; therefore the resulting IDE can be very

specific. Unfortunately most of the IDEs developed this way

have a hardcoded DSML definition, which makes them

difficult to change in order to follow the DSML or domain

evolution.

The development with reuse (Y on Figure 1) is the path

that makes reuse of one or more assets (libraries or

frameworks). Most commonly the reused asset is a

diagramming library. Popular assets to be reused are also

template engines, which can be used as artifacts generators.

Because of the mentioned reuse less of the DSML definition

is hardcoded. The main challenges of this development path

are: customization of the reused assets, which have to be

very well understood, and the integration of custom code

and the reused assets.

The development with metamodeling tools (Z on Figure 1)

is the path that enables the development of an IDE for the

selected DSML based on the formal definition of that

DSML. A metamodeling tool is an IDE that allows the

definition of an arbitrary DSML and consequently the

generation of a model-driven IDE for that DSML [17]. One

of the aims of metamodeling tools is to reduce the amount of

coding that has to be done with general-purpose

programming languages in the discussed context.

The main question is: Which of these paths is the most

suitable in the majority of situations? The answer to this

question is provided by the following reasoning, which is

done with the help of Figure 1 (the development cost in this

context is defined as a composite of the invested money and

time).

Some initial definitions to clarify the scheme in Figure 1:

� � ��, ��, ���, … � – Application domains

� � ���, ��, �� …� | �� � � – DSMLs

� � ���, ��, �� …� – Identified metamodeling tools

� � ���, ��, �� …� – Identified reusable assets

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

Figure 1: The path from an arbitrary DSML to an IDE for it.

The following definitions are true for an arbitrary DSML out

of any application domain:

� !" – Cost of X

� #�" $ � #�", � �%, % � & – Cost of Y

� #�" – Cost of finding & procuring a reusable asset

� #�" – Cost of the development with the selected asset

� '�" $ � '�" $ � '�", � �(,(� & – Cost of Z

� '�" – Cost of finding the available metamodeling tools

� '�" – Cost of selecting a metamodeling tool

� '�" – Cost of developing with the selected metamodeling

 tool

The development from scratch can be expensive and time-

consuming. The needed development effort according to

[18] is at least one man-year of work. Although this number

and claims are not supported by any quantitative research,

the existing literature disseminates and accepts the dogma

that the development with metamodeling tools is much

cheaper than the development from scratch. Our first

deduction (1) is based on the explicit expression of this

opinion in [13, 18, 19]:

� !") � '�" $ � '�" $ � '�" (1)

According to the sources [18, 19] the development with

metamodels is also much cheaper than the development with

reuse. We agree with this assumption, above all because of

our own experience with the development of a model-driven

IDE for the ProcGraph language [20], which are documented

in [21] and [22]. Based on this we deduct (2):

� #�" $ � #�") � '�" $ � '�" $ � '�" (2)

Considering (1) and (2) we infer that metamodeling tools

have to be employed in order to reduce the cost of MDE

introduction.

An exception to the “develop with metamodeling tools”

rule is the tool support for a DSML, which is abstracting a

domain that has a sufficiently large (potential) user base

and/or market. In this case the investment into development

from scratch is reasonable [19]. Well known examples of

such tools are LabVIEW - a graphical programming

environment and Simulink - a hierarchical block-diagram

design and simulation tool.

Currently there are around 10 metamodeling tools

available on the market, which have very different

capabilities. Therefore practitioners are facing the

pretentious question: “Which metamodeling tool should we

procure? The procurement of a sub-optimal or even an

improper metamodeling tool will have profound negative

consequences: unjustified expenses (tool purchase,

developer work); losing ground (several months) with the

competition; the risk of project failure.

Unfortunately this question has been neglected in the

literature (no obvious answer to this question can be found),

even though it could importantly contribute to the

minimization of MDE introduction costs.

 Although a considerable amount of articles about

metamodeling tools can be found, the majority of them are

biased, because they describe the metamodeling tool that

was developed by the article authors. We have noticed only

a few articles [23, 24] that are comparing different

metamodeling tools, but they are not sufficiently helpful for

practitioners, because they review too few of them.

This paper describes a disciplined process of procuring

the fittest metamodeling tool for a real-life project and thus

may be of interest for MDE practitioners and even more the

ones who intend to become such practitioners. This project

is the development of an IDE for the ProcGraph language

[20].

V. THE PROCESS OF A METAMODELING TOOL PROCUREMENT

The general process of procuring the fittest metamodeling

tool as we see it is presented in Figure 2. The initiation of

this process should be the decision of stakeholders to

introduce MDE into their organization. An important input

into this process is the definition of the DSML for which the

IDE will be developed. The highlighted phases in Figure 2

represent the most important activities of the process. The

following subsections documented their execution for the

project we have undertaken. The presented process includes

also an exception, which occurs if none of the metamodeling

tools is suitable; the workflow in that case is modeled in

Figure 2 and should be self-explanatory. The process can

end when the stakeholders decide (based on the selection

report) if the selected metamodeling tool should be procured.

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

Figure 2: The metamodeling tool procurement process as we see it.

A. Requirements specification

The requirements specification phase is one of the most

important development phases as it defines what the

software system should do. The mistakes and

misconceptions made here are the ones which demand the

most work and expenses for their correction.

The requirements in our project had to be stated in a way

that would enable the evaluation and selection of

metamodeling tools. The requirements actually became the

evaluation criteria. We developed a template for each

requirement, which can be seen in Table I. A measurement

scale from 1 to 5 was defined in order to denote the

importance of each requirement. The stakeholders define the

importance of each requirement according to this scale. The

number 5 was chosen to denote that a requirement is

mandatory. After this phase we produced a requirements

description document with 26 requirements.

B. Market Analysis

This phase includes scanning the market for currently

available metamodeling tools and the identification of the

ones who could be potentially useful for our project.

Our search, which was also committed on the databases of

scientific publications, identified 5 candidates (see Table II).

C. Tool evaluation

The essence of this time consuming and labor-intensive

phase is to evaluate the capability of the identified candidate

tools to meet every requirement that was specified.

Each fulfillment of a requirement was evaluated: with 1 if

the requirement was fully fulfilled, with ½ if the requirement

was fulfilled satisfactory, but not optimal and with 0 if the

requirement was unfulfilled or fulfilled unsatisfactory.

In the first step we evaluated all the candidates only with

the mandatory requirements, this way a quick elimination of

the least fit candidates was possible. In our project we

dismissed GME, MetaEdit+ and GEMS.

The second step was to evaluate the remaining candidates

in-detail according to all the non-mandatory requirements.

The result of this can be viewed in Table III (Eval. column).

D. Selection

In this phase we decide which tool is the fittest. To make a

decision we used the weighted score method (WSM) [25].

The weighted score for each requirement evaluation is

calculated based on the equation (Table III, Sel. column):

TABLE I: REQUIREMENT EXAMPLE

Id & short name: R2.4 - Superstates can overlap

Importance: 3 - Important

Preface: ProcGraph notation does allow the existence

of overlapping superstates, which can be

beneficial in some situations.

Description: It should be possible to create superstates

that can overlap.

Example: A state transition diagram with overlapping

superstates ("Operating" and "Non drying"):

TABLE II: IDENTIFIED METAMODELING TOOLS

Tool name Vendor/Author
Execution

environment

GME ISIS @ Vanderbilt University stand-alone

DSL Tools Microsoft VS.NET 2005

MetaEdit+ MetaCase stand-alone

GMF open-source & industry partners Eclipse

GEMS ISIS @ V. U. & industry partners Eclipse

TABLE III: THE SECOND EVALUATION STEP & SELECTION

Req. Id
Req.

Importance

DSL Tools GMF

Eval. Sel. Eval. Sel.

R1 5 1 5 1 5

R1.1 4 0 0 1 4

R1.2 4 1 4 1 4

R1.3 5 1 5 1 5

R1.4 5 1 5 1 5

R1.5 3 1 3 ½ 1,5

…

R11 2 ½ 1 1 2

Final score 89,5 93,5

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

*+,-./0123405 � -.67-.8.9:1;<=>4?@A0 B *+,-.0C?DE?405

The final score, which gives a numeric indication of the

fitness of a candidate, is calculated (where n is the number

of all the specified requirements):

+,-.F1@?D � G+,-./0124305 H

@

HIJ

The fittest metamodeling tool for our project was GMF. It

reached the highest score, which can be seen in Table III.

VI. RELATED WORK

The literature provides only general procurement

processes that are dealing with the procurement of

“Commercial Off The Shelf” (COTS) software. COTS is a

software product that already exists, that is supplied by a

vendor and that has specific functionality [26].

Metamodeling tools can be classified as COTS software,

therefore COTS procurement processes could be used at the

procurement of metamodeling tools. The crucial question is:

“Should they?”

Currently there is a great variety of COTS procurement

processes available that are documented in the literature.

Some of the most important are [27]: the OTSO (Off-The-

Shelf Option) approach, the PORE approach, the CAP

(COTS acquisition process) approach, the CARE (COTS-

Aware Requirements Engineering) approach and the MiHOS

(Mismatch-Handling aware COTS Selection) approach.

Although intensive research efforts have been spend on the

development of these methods, none of them can be

considered as the silver-bullet to solving the COTS selection

problem [27]. Because of that each practitioner stands in

front of the challenge: “Which of these methods should be

used for our project?” Even this decision turns out to be

difficult and requires considerable effort. In [28] R. Glass

stated: “What help do practitioners need? We need some

better advice on how and when to use methodologies.” One

of the most burning research challenges in the area of COTS

procurement is how to adopt an arbitrary COTS selection

process into different specific contexts [27].

Based on these open questions it is our opinion that COTS

selection processes are too generic to aid MDE practitioners

at the procurement of metamodeling tools.

VII. CONCLUSION

This article documented the project of procuring the fittest

metamodeling tool for the implementation of an IDE for the

ProcGraph language. This example may be useful for MDE

practitioners, which are facing a similar challenge and is

even more important as an initial step towards the

development of guidelines and eventually a method for the

procurement of the fittest metamodeling tool (in the given

situation). These guidelines and method would provide a

more stable context for the introduction of MDE, because

they would minimize the procurement cost and risk.

VIII. REFERENCES

[1] B. Selic, “The pragmatics of model-driven development,” IEEE

Software, vol. 20, no. 5, pp. 19-25, 2003.

[2] S. Sendall, and W. Kozaczynski, “Model transformation: the heart and

soul of model-driven software development,” IEEE Software, vol. 20,

no. 5, pp. 42-45, 2003.

[3] The Object Management Group, Unified Modeling Language:

Superstructure, Version 2.0, 2004.

[4] E. Seidewitz, “What models mean,” IEEE Software, vol. 20, no. 5, pp.

26-32, 2003.

[5] S. Demeyer, S. Ducasse, and E. Tichelaar, “Why unified is not

universal: UML shortcomings for coping with round-trip

engineering,” LNCS vol.1723, pp. 630-645, 1999.

[6] T. J. Biggerstaff, “A perspective of generative reuse,” Annals of

Software Engineering, vol. 5, pp. 169-226, 1998.

[7] W. B. Frakes, and K. Kyo, “Software reuse research: status and

future,” IEEE Transactions on Software Engineering, vol. 31, no. 7,

pp. 529-536, 2005.

[8] D. C. Schmidt, “Model-Driven Engineering,” IEEE Computer, vol.

39, no. 2, pp. 25-31, 2006.

[9] C. Atkinson, and T. Kuhne, “Model-driven development: a

metamodeling foundation,” IEEE Software, vol. 20, no. 5, pp. 36-41,

2003.

[10] K. Chen, J. Sztipanovits, and S. Neema, “Toward a semantic

anchoring infrastructure for domain-specific modeling languages,” in

5th International Conference on Embedded Software, 2005, pp. 35-43.

[11] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model

Driven Architecture: Practice and Promise: Addison-Wesley 2003.

[12] K. Czarnecki, and S. Helsen, “Feature-based survey of model

transformation approaches,” IBM Systems Journal, vol. 45, no. 3, pp.

621-646, 2006.

[13] T. Stahl, and M. Volter, Model-Driven Software Development: John

Wiley & Sons, 2006.

[14] R. France, S. Ghosh, E. Song et al., “A Metamodeling Approach to

Pattern-Based Model Refactoring,” IEEE Software, vol. 20, no. 5, pp.

52-58, 2003.

[15] J. Gray, Y. Lin, and J. Zhang, “Automating change evolution in

model-driven engineering,” IEEE Computer, vol. 39, no. 2, pp. 51-58,

2006.

[16] R. France, and B. Rumpe, “Model-driven Development of Complex

Software: A Research Roadmap,” in FOSE'07, 2007, pp. 37-54.

[17] N. Zhu, J. Grundy, J. Hosking et al., “Pounamu: A meta-tool for

exploratory domain-specific visual language tool development,”

Journal of Systems and Software, vol. 80, no. 8, pp. 1390-1407, 2007.

[18] J.-P. Tolvanen, “MetaEdit+: domain-specific modeling for full code

generation demonstrated,” in 19th Annual OOPSLA Conference,

2004, pp. 39-40.

[19] A. Ledeczi, A. Bakay, M. Maroti et al., “Composing domain-specific

design environments,” IEEE Computer, vol. 34, no. 11, pp. 44-51,

2001.

[20] G. Godena, “ProcGraph: a procedure-oriented graphical notation for

process-control software specification,” Control Engineering Practice,

vol. 12, no. 1, pp. 99-111, 2004.

[21] G. Kandare, “Računalniško podprto načrtovanje programske opreme

za postopkovno vodenje s programirljivimi logičnimi krmilniki,”

Doctoral Dissertation, Faculty of Electrical Engineering, 2004.

[22] T. Lukman, “Model driven engineering in the domain of industrial

control systems,” Undergraduate Thesis, University of Maribor,

Faculty of Electrical Engineering and Computer Science, 2007.

[23] B. Carsten, “Model-Driven HMI Development: Can Meta-CASE

Tools do the Job?,” in 40th Annual Hawaii International Conference

on System Sciences, 2007, pp. 1530-1605.

[24] S. Kelly, “Comparison of Eclipse EMF/GEF and MetaEdit+ for

DSM,” 19th Annual OOPSLA Conference, 2004.

[25] J. Kontio, S. F. Chen, K. Limperos et al., “A COTS Selection Method

and Experiences of Its Use,” in 20th Annual Software Engineering

Workshop, 1995.

[26] N. A. Maiden, and C. Ncube, “Acquiring COTS software selection

requirements,” IEEE Software, vol. 15, no. 2, pp. 46-56, 1998.

[27] A. Mohamed, G. Ruhe, and A. Eberlein, "COTS Selection: Past,

Present, and Future," ECBS '07, 2007, pp. 103-114.

[28] R. L. Glass, “Matching methodology to problem domain,”

Communications of the ACM, vol. 47, no. 5, pp. 19-21, 2004.

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

